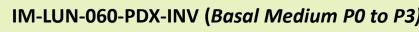
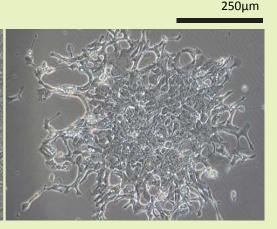

IMODI Initiative: a Novel Holistic and Integrative Approach with Patient-Derived Tumor Models

¹Ariana Pharmaceuticals, Paris; ² BIOFORTIS MERIEUX NUTRISCIENCES, Saint-Herblain; ³ CTI-BIOTECH, Meyzieu; ⁴ Modul-Bio, Marseille; ⁵ Oncodesign, Dijon; ⁶ OncoMedics, Limoges; ⁷ Ipsen Innovation, Les Ulis; ⁸ Pierre Fabre Research Institut, Suresnes; ¹¹ CNRS U5059, Toulouse; ¹² Centre Georges François Leclerc, Dijon; ¹⁰ Servier Research Institut, Suresnes; ¹¹ CNRS U5059, Toulouse; ¹² Centre Georges François Leclerc, Dijon; ¹⁰ Servier Research Institut, Suresnes; ¹¹ CNRS U5059, Toulouse; ¹² Centre Georges François Leclerc, Dijon; ¹⁰ Servier Research Institut, Suresnes; ¹¹ CNRS U5059, Toulouse; ¹² Centre Georges François Leclerc, Dijon; ¹⁰ Servier Research Institut, Suresnes; ¹¹ CNRS U5059, Toulouse; ¹² Centre Georges François Leclerc, Dijon; ¹⁰ Servier Research Institut, Suresnes; ¹⁰ Servier Research Institut, Suresnes; ¹¹ CNRS U5059, Toulouse; ¹² Centre Georges François Leclerc, Dijon; ¹⁰ Servier Research Institut, Suresnes; ¹⁰ Servier Research Institut, Suresnes; ¹⁰ CNRS U5059, Toulouse; ¹² Centre Georges François Leclerc, Dijon; ¹⁰ Servier Research Institut, Suresnes; ¹⁰ Servier Rese ¹³ Toulouse Hospital; ¹⁴ Centre Léon Bérard, Lyon; ¹⁵ INSERM U938, Paris; ¹⁶ INSERM U1033, Lyon; ¹⁷ INSERM U1037, Toulouse; ¹⁸ INSERM U1037, Toulouse; ¹⁸ INSERM U1037, Toulouse; ¹⁸ INSERM U1052, Lyon; ¹⁹ INSERM U1037, Toulouse; ¹⁸ INSERM U1037, Toulouse; ¹⁸ INSERM U1037, Toulouse; ¹⁸ INSERM U1037, Toulouse; ¹⁸ INSERM U1037, Toulouse; ¹⁹ INSERM U1037, Toulouse; ¹⁹ INSERM U1037, Toulouse; ¹⁰ INSERM U1037, ¹

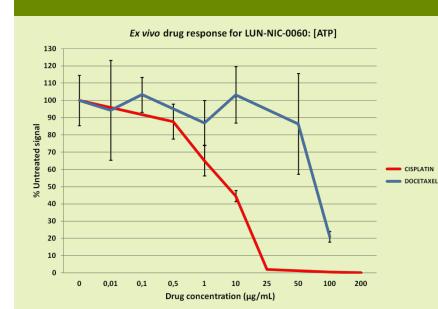



F. Le Vacon², D. Guenot²², L. Arnould¹², A. Bruno¹⁰, L. Calvet⁹, M. Colombel¹⁶, J. Corre¹⁷, O. Rosmorduc²³, J.E. Sarry¹⁷, S. Tabone^{14,21}, Ph. Vaglio⁴, L.Ysebaert¹³, O. Duchamp⁵, M. Kuras¹, O. Rosmorduc²³, J.E. Sarry¹⁷, S. Tabone^{14,21}, Ph. Vaglio⁴, L.Ysebaert¹³, O. Duchamp⁵, S. Tabone^{14,21}, Ph. Vaglio⁴, S. Tab

- Significant efficacy of cisplatin and gemcitabine on the LUN-NIC-0060 epidermoid model
- Marginal activity of gefitinib on the LUN-NIC-0014 acinar adenocarcinoma model (EGFR wt, KRAS wt, BRAF wt, ALK wt, ROS1 wt)
- LUN-NIC-0014 PDX response to cisplatin and docetaxel correlates with patient outcome (non responsive to cisplatin + docetaxel)



In-vitro PDX-Derived Cell Line Establishment



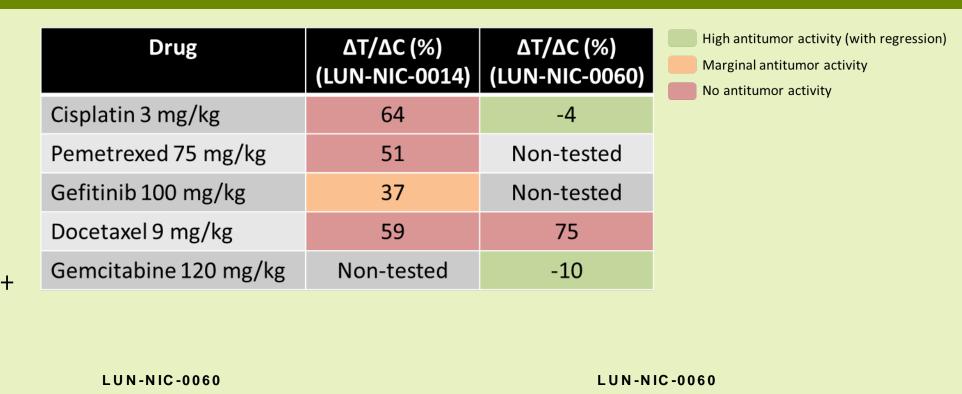
o expansion of both mous oblast and human epithelial Culture at high level of fibro confluency allowed th development of epithelial ce

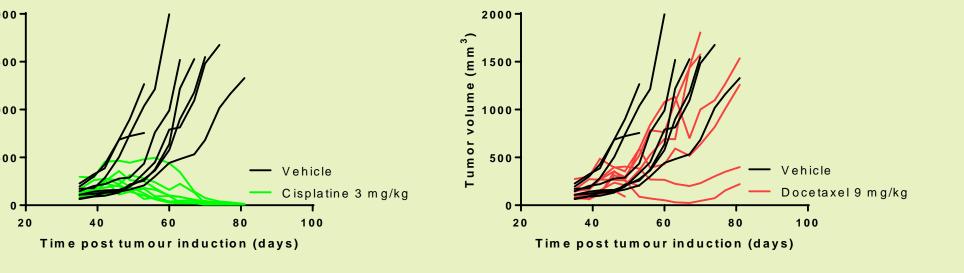
Once a critical cell number is reached, the epithelial clusters are subcultured and develop into a mouse fibroblast-free culture of epithelial cell currently being characterized

Ex-vivo Pharmacology Assay

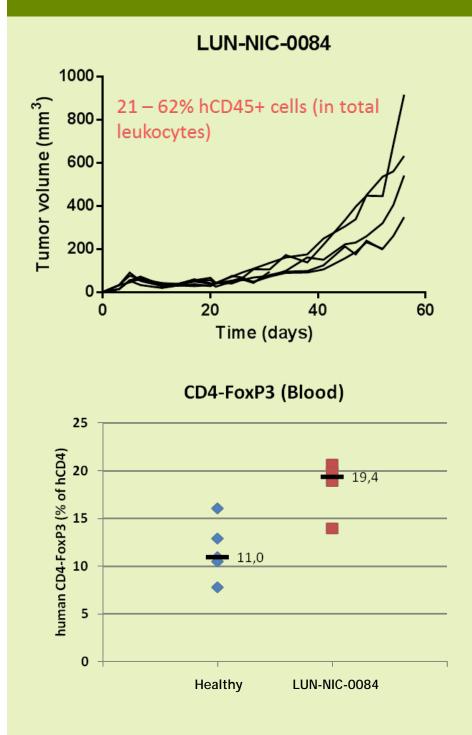
organized in colonies

Chemosensitivity evaluation in 2D PDX-derived primary cultures of cells extracted from LUN-NIC-0060 PDX tumors in defined medium after 5 days of culture by ATP level measurement (metabolic activity) and calcein & ethidium test (cell mortality, data not shown).

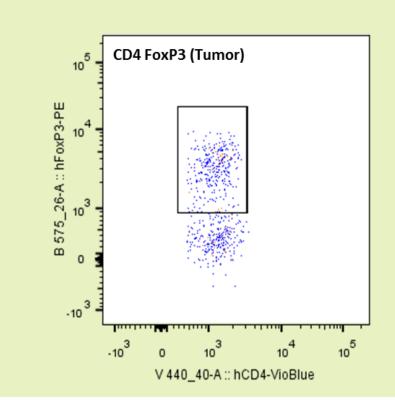

Cisplatin is more effective than docetaxel on the LUN-NIC-0060 model as confirmed by the *in-vivo* data


Conclusion and perspectives

> IMODI is an operational consortium to continuously deliver new predictive models in regards to specific clinical needs and diversity,


> Ex-vivo assay predicts in-vivo cisplatin and docetaxel sensitivity in a lung PDX model (other drugs and models are under investigation), > Chemotherapeutic agents could impact the microbiota composition and microbiome analysis could learn about drug toxicity and tumor response, > 2nd generation of PDX model with human microenvironment would help the selection of clinical drug candidates (impact of the humanization on the pharmacological drug profile is pending).

In-vivo Pharmacological Response to Standards of Care


Tumor Microenvironment Humanization

CD34+ humanization of mice did not modify the PDX tumor growth

A38

- Tumor xenografting increases Treg circulating cells
- Human Treg cells infiltrate the LUN-NIC-0084 tumors (cytometry)

