Development of a high throughput in vitro screening platform to identify novel inducers of immunological cell death

Onco design
D. Grillot ${ }^{1}$, A. Gangar ${ }^{1}$, R. Guillard-Huet ${ }^{1}$, E. Boursier ${ }^{1}$, F. Potvain¹, G. Serin², J.-F. Mirjolet ${ }^{\mathbf{2}}$
${ }^{1}$ Oncodesign Les Ulis (FRANCE), ${ }^{2}$ Oncodesign Dijon (FRANCE)

Immunogenic cell death and Nanocyclix

Some single-agent ICD inducers in cancer:

ICD inducers	Associated ICD-relevant DAMPs	
	DAMP	Stage of cell death
Anthracyclines (mitoxantrone, doxorubicin, etc.)	Surface CRT Surface HSP70 Secreted ATP Released HMGB1	Pre-apoptotic Mid-apoptotic Early/mid apoptotic Post-apoptotic
Bortezomib	Surface HSP90 Surface CRT Surface HSP70	Early/mid apoptotic Early/mid apoptotic Early/mid apoptotic
Cyclophosphamide	Surface CRT Released HMGB1	Early/mid apoptotic Post-apoptotic
Garge at, Front lmunol 201516.588		

Several ICD inducers were tested in DAMP-associated assays following which mitoxantrone and doxorubicin were chosen as positive controls.

Nanocyclix compound library: Nanocyclix ${ }^{\circledR}$ is a proprietary medicinal chemistry technology based on the macrocyclizatio of small Lead-like molecules. This leads to low MW kinase inhibitors with a unique binding mode and mode of action. The shape complementarity between the inhibitor and the active site of the kinase is believed to result in high potency and selectivity.

ALead-like set of 2318 compounds was selected to screen for novel ICD inducers.

ICD, a non-conventional type of apoptosis is associated with the activation of an adaptive immune response against dead cell associated antigens. Anthracyclines exert immunostimulatory associated antigens. Anthracyclines exert immunostimulatory
effects that rely on ICD. It is desirable to explore if other effects that rely on ICD. It is desirable to explore if other
molecules can increase cancer cell immunogenicity and be molecules can increase cancer cell immunogenicity and
attractive candidates for (combination) immunotherapy.

Based on this knowledge, we developed a high throughput in vitro screening platform enabling the identification of compounds that induce ATP secretion, CRT exposure and HMGB1 release.

We first tested this platform on our Lead-like set, unveiling several Nanocyclix molecules to render cell death immunogenic

SCREENING STRATEGY for IDENTIFICATION of HITS

Step 1: Identify lowest toxic dose
3 cell lines: U-2 OS (human), MDA-MB-231 (human) and Hepa 1-6 (mouse)
5 doses: $10,5,2.5,1.25,0.61 \mu \mathrm{M}$

- 72 h incubation followed by assessment of cell viability
(CellTiter Glo) using EnVision plate reader
Assay format: 384-well plate
>Cut-off: >75\% viability
144 hits

Step 2: Identify compounds that result in secreted ATP at nontoxic dose

- 3 cell lines: U-2 OS (human), MDA-MB-231 (human) and Hepa 1-6 (mouse)
- 5 doses : highest concentration chosen from Step 1
- 72h incubation followed by evaluation of cell viability
(CellTiter Glo) and secreted ATP (Enliten)
- Assay format: 96-well plate
$>$ Cut-off: $>2 x$ secreted ATP with $>75 \%$ viability

ODS142

[^0]In vitro detection of ICD inducers
 toxic concentration.

Step 3: Identify ICD inducers

- 3 cell lines : U-2 OS (human), MDA-MB-231 (human) and Hepa 1-6 (mouse)
- 5 doses : highest concentration chosen from Step 2
- 72 h incubation followed by assessment of cell viability
(CellTiter Glo), secreted ATP (Enliten), HMGB1 release (ELISA -
48h), surface CRT (IF)
- Assay format: 96-well plate
>HMGB1 release: ELISA (IBL international)

	MDA-MB-231		Hepa 1-6	
Cpd ($\mu \mathrm{M}$)	Viability	HMGB1	Viability	HMGB1
DMSO 0.2\%	00\%	100\%	100\%	100
MTX 0.25	102\%	240\%	90\%	171\%
MTX 0.5	87\%	274\%	84\%	240\%
MTX 1	79\%	327\%	75\%	331\%
Dox 0.5	102\%	228\%	83\%	193\%
Dox 1	87\%	273\%	68\%	309\%
Dox 5	60\%	600\%	14\%	630\%

	MDA-MB-231		Hepa 1-6	
Cpd	Conc	HMGB1	Conc	HMGB1
DMSO	0.2%	$\mathbf{1 0 0 \%}$	0.2%	$\mathbf{1 0 0 \%}$
	0.001	$\mathbf{9 7 \%}$	0.010	$\mathbf{9 8 \%}$
	0.0025	$\mathbf{1 4 0 \%}$	0.050	$\mathbf{1 1 3 \%}$
	0.005	155%	0.100	$\mathbf{1 2 2 \%}$
ODS142	0.0075	184%	0.500	$\mathbf{1 5 7 \%}$
$(\mu \mathrm{M})$	0.010	186%	0.750	$\mathbf{1 7 1 \%}$
	0.100	$\mathbf{2 7 6 \%}$	1.000	$\mathbf{1 8 2 \%}$
	1.000	$\mathbf{3 2 4 \%}$	5.000	$\mathbf{2 6 9 \%}$
	10.000	$\mathbf{6 8 2} \%$	10.000	$\mathbf{2 8 6 \%}$

U-2 OS cells:

At non-toxic doses, MTX and Dox treatment did not result in an increase in HMGB1 release.

- High concentrations of ODS142 lead to HMGB1 release.

ODS142 treatment results in HMGB1 release in 3 cell lines at non-toxic concentration.
$>$ Surface calreticulin detection: IF (Thermofisher antibody)

	Calre DMSOMT	iculin memb	ane inte JDMSOMTX	nsity: IF qua Nọ n ($\mu \mathrm{M}$) DOX ($\mu \mathrm{M}$	ntificat DMSOMT	
	U-2 OS		MDA-MB-231		Hepa 1-6	
Cpd	Conc	Surface CRT	Conc	Surface CRT	Conc	Surface CRT
DMSO	0.2\%	100\%	0.2\%	100\%	0.2\%	100\%
$\begin{gathered} \text { ODS142 } \\ (\mu \mathrm{M}) \end{gathered}$	0.050	123\%	0.001	113\%	0.010	98\%
	0.100	127\%	0.0025	163\%	0.050	120\%
	0.250	261\%	0.005	246\%	0.100	126\%
	0.500	247\%	0.0075	269\%	0.500	262\%
	0.750	258\%	0.010	260\%	0.750	268\%
	1.000	269\%	0.100	323\%	1.000	280\%
	5.000	285\%	1.000	233\%	5.000	241\%
	10.000	339\%	10.000	256\%	10.000	208\%

ODS142 treatment results in an increase in surface CRT at non-toxic concentration.
> Surface HSP90: IF (abcam antibody)

U-2 OS		MDA-MB-231		Hepa 1-6	
Cpd ($\boldsymbol{\mu M}$)	HSP90	Cpd ($\boldsymbol{\mu M}$)	HSP90	Cpd ($\boldsymbol{4}$ M)	HSP90
DMSO 0.2\%	$\mathbf{1 0 0 \%}$	DMSO 0.2\%	$\mathbf{1 0 0 \%}$	DMSO 0.2\%	$\mathbf{1 0 0 \%}$
MTX 0.1	397%	MTX 0.25	240%	MTX 0.25	329%
MTX 0.25	425%	MTX 0.5	230%	MTX 0.5	343%
Dox 0.1	429%	Dox 0.25	250%	Dox 0.25	224%
Dox 0.2	441%	Dox 0.5	251%	Dox 0.5	311%

Surface HSP90 is detectable after MTX and Dox treatment and can be used as an ICD read-out.

Conclusions

- Here, we describe a general strategy for the identification of ICD inducers within large chemical libraries.

[^0]: Color code:
 Activity without toxicity
 Toxicity

