Development of a high throughput in vitro screening platform to identify novel inducers of immunological cell death

For more information: contact@oncodesign.com

ICD, a non-conventional type of apoptosis is associated with the activation of an adaptive immune Referent cell Receptors death pathway response against dead cell-associated antigens. Anthracyclines exert immunostimulatory effects that P2Y2 and rely on ICD. It is desirable to explore if other molecules can increase cancer cell immunogenicity and be apoptosis/sec-P2X1 attractive candidates for (combination) immunotherapy. Based on this knowledge, we developed a high throughput in vitro screening platform enabling the CD91 identification of compounds that induce ATP secretion, CRT exposure and HMGB1 release. We first tested this platform on our Lead-like set, unveiling several Nanocyclix molecules to render cell CD91, TLR2, death immunogenic. TLR4, SREC-1 and FEEL-1 **SCREENING STRATEGY for IDENTIFICATION of HITS** TLR2, TLR4, Step 1: Identify lowest toxic dose 3 cell lines : U-2 OS (human), MDA-MB-231 (human) and Hepa 1-6 (mouse) 5 doses : 10, 5, 2.5, 1.25, 0.61 μM • 72h incubation followed by assessment of cell viability (CellTiter GIO) using EnVision plate reader Assay format: 384-well plate Cut-off: >75% viability Step 2: Identify compounds that result in secreted ATP at non-toxic dose 3 cell lines : U-2 OS (human), MDA-MB-231 (human) and Hepa 1-6 (mouse) 5 doses : highest concentration chosen from Step 1 • 72h incubation followed by evaluation of cell viability (CellTiter Glo) and secreted ATP (Enliten) Assay format: 96-well plate Cut-off: >2x secreted ATP with >75% viability MDA-MB-231 U-2 OS Viability Secreted ATP Cpd (µM) Viability Secreted ATP (Mu) bqC DMSO 0.2% 100% 100% DMSO 0.2% 100% 100% 801% MTX 0.2 629% MTX 0.1 90% 92% MTX 0.3 MTX 0.25 1214% 90% 441% 81% Dox 0.2 79% 627% Dox 0.1 289% 99% Dox 0.25 847% Dox 0.25 429% 85% 96% U-2 OS **MDA-MB-231** Compound Conc Secreted ATP Conc Secreted ATP Cor 100% DMSO 0.2% 0.2% 100% 0.2% 116% 50% 0.001 0.050 0.0025 130% 266% 0.100 0.250 536% 313% 0.005 ODS142 0.500 0.0075 523% 560% (µM) 0.750 636% 0.010 647% 1070% 841% 0.100 1.000 1.000 5.000 835% 10.000 10.000 238% 901% A Lead-like set of ODS142 treatment results in an increase in secreted ATP at non-toxic concentration. 2318 compounds was selected to Step 3: Identify ICD inducers screen for novel 3 cell lines : U-2 OS (human), MDA-MB-231 (human) and Hepa 1-6 (mouse) ICD inducers. 5 doses : highest concentration chosen from Step 2 • 72h incubation followed by assessment of cell viability (CellTiter Glo), secreted ATP (Enliten), HMGB1 release (ELISA - 48h), surface CRT (IF)

Garg et al, Front Immunol (2015) 6-588 Several ICD inducers were tested in DAMP-associated assays following which mitoxantrone and doxorubicin were chosen as positive controls. Garg et al, Front Immunol (2015) 6-588 chemical_series () cLog D Ring size 33 43 53 53 73 83

ICD inducers	Associated ICI		
	DAMP	Stage of cell death	
Anthracyclines (mitoxantrone, doxorubicin, etc.)	Surface CRT Surface HSP70 Secreted ATP Released HMGB1	Pre-apoptotic Mid-apoptotic Early/mid apoptotic Post-apoptotic	
Bortezomib	Surface HSP90 Surface CRT Surface HSP70	Early/mid apoptotic Early/mid apoptotic Early/mid apoptotic	
Cyclophosphamide	Surface CRT Released HMGB1	Early/mid apoptotic Post-apoptotic	

DAMPs (ATP, CRT, HSPs and HMGB1) released during immunogenic cell death (ICD) recruit and activate immune cells (DC, monocytes, T cells) to recognize tumor (neo)-antigens. Some single-agent ICD inducers in cancer: Nanocyclix compound library: Nanocyclix[®] is a proprietary medicinal chemistry technology based on the macrocyclization of small Lead-like molecules. This leads to low MW kinase inhibitors with a unique binding mode and mode of action. The shape complementarity between the inhibitor and the active site of the kinase is believed to result in high potency and selectivity.

American Association for Cancer Research (AACR) Annual Meeting / Chicago, USA. April 14-18, 2018

D. Grillot¹, A. Gangar¹, R. Guillard-Huet¹, E. Boursier¹, F. Potvain¹, G. Serin², J.-F. Mirjolet² ¹ Oncodesign Les Ulis (FRANCE), ² Oncodesign Dijon (FRANCE)

In vitro detection of ICD inducers

Assay format: 96-well plate

144 hits

						24	hits	
			H€	epa 1-6				
Ср	od (µM)	Viabi	lity	Secreted ATP				
DN	ISO 0.2%	100)%	100%				
M٦	X 0.25	91	%	312%				
M٦	X 0.5	105	5%	445%				
Do	x 0.25	91	%	240%				
Do	x 0.5	98	%	487%				
Η	lepa 1-6							
าต	Secreted	d ATP						
%	100%	%						
10	78%			ODS142				
50	201%		→ i	dontified a	<u> </u>	hit		
00	392%			uentineu a	5 0	m		
00	394%	6						
50	4779	6						
00	438%			Color code:				
00	370%			Activity without toxicity				
000	369%	6		loxicity				

In vitro detection of ICD inducers

NUMCD1 roloaco, ELICA (IDL Subsections)

F HIVIGD I TETEASE. ELISA (IBL International)									
					MDA-MB-231 Hepa		a 1-6	U-2 OS cells:	
MDA-M	B-231	Hepa	1-6	Cpd	Conc	HMGB1	Conc	HMGB1	- At non-toxic doses
Viability	HMGB1	Viability	HMGB1	DMSO	0.2%	100%	0.2%	100%	MTV and Day treatment
100%	100%	100%	100%		0.001	97%	0.010	98%	
102%	240%	90%	171%		0.0025	140%	0.050	113%	did not result in an
87%	274%	84%	240%		0.005	155%	0.100	122%	increase in HMGB1
79%	327%	75%	331%	ODS142	0.0075	184%	0.500	157%	release
102%	228%	83%	193%	(µM)	0.010	186%	0.750	171%	Ligh concontrations of
87%	273%	68%	309%		0.100	276%	1.000	182%	
60%	600%	14%	630%		1.000	324%	5.000	269%	ODS142 lead to HMGB1
					10.000	682%	10.000	286%	release.
	MDA-M Viability 100% 102% 87% 102% 87% 60%	MDA-MB-231 Viability HMGB1 100% 100% 102% 240% 87% 274% 102% 327% 102% 228% 87% 273% 60% 600%	MDA-MB-231 Hepa Viability HMGB1 Viability 100% 100% 100% 102% 240% 90% 87% 274% 84% 79% 327% 75% 102% 228% 83% 87% 273% 68% 60% 600% 14%	MDA-MB-231 Hepa 1-6 Viability HMGB1 Viability 100% 100% 100% 102% 240% 90% 171% 87% 274% 84% 240% 79% 327% 75% 331% 102% 228% 83% 193% 87% 273% 68% 309% 60% 600% 14% 630%	MDA-MB-231 Hepa 1-6 Viability HMGB1 Viability HMGB1 100% 100% 100% 100% 102% 240% 90% 171% 87% 274% 84% 240% 79% 327% 75% 331% 102% 228% 83% 193% 87% 273% 68% 309% 60% 600% 14% 630%	MDA-MB-231 Hepa 1-6 MDA-M Viability HMGB1 Viability HMGB1 DMSO 0.2% 100% 100% 100% 000% 102% 240% 90% 171% 87% 274% 84% 240% 79% 327% 75% 331% 102% 228% 83% 193% 87% 273% 68% 309% 60% 600% 14% 630%	MDA-MB-231 Hepa 1-6 Viability HMGB1 Viability HMGB1 100% 100% 100% 102% 240% 90% 171% 87% 274% 84% 240% 79% 327% 75% 331% 102% 228% 83% 193% 60% 600% 14% 630%	MDA-MB-231 Hepa 1-6 Viability HMGB1 Viability HMGB1 Cpd Conc HMGB1 Conc 100% 100% 100% 100% 0.2% 100% 0.2% 102% 240% 90% 171% 0.0025 140% 0.050 87% 274% 84% 240% 0.005 155% 0.100 102% 228% 83% 193% 0.010 186% 0.750 87% 273% 68% 309% 0.100 276% 1.000 60% 600% 14% 630% 10.000 682% 10.000	MDA-MB-231 Hepa 1-6 MDA-MB-231 Hepa 1-6 Viability HMGB1 Viability HMGB1 100% 100% 100% 100% 102% 240% 90% 171% 87% 274% 84% 240% 79% 327% 75% 331% 102% 228% 83% 193% 87% 273% 68% 309% 60% 600% 14% 630%

ODS142 treatment results in HMGB1 release in 3 cell lines at non-toxic concentration.

Surface calreticulin detection: IF (ThermoFisher antibody)

	ι	J-2 OS	MD	H	
Cpd	Conc	Surface CRT	Conc	Surface CRT	Conc
DMSO	0.2%	100%	0.2%	100%	0.2%
	0.050	123%	0.001	113%	0.010
	0.100	127%	0.0025	163%	0.050
	0.250	261%	0.005	246%	0.100
ODS142	0.500	247%	0.0075	269%	0.500
(µM)	0.750	258%	0.010	260%	0.750
	1.000	269%	0.100	323%	1.000
	5.000	285%	1.000	233%	5.000
	10.000	339%	10.000	256%	10.000

ODS142 treatment results in an increase in surface CRT at non-toxic concentration.

Surface HSP90: IF (abcam antibody)

U-2 C)S	MDA-MB	-231	Hepa 1-6			
Cpd (µM)	HSP90	Cpd (µM)	HSP90	Cpd (µM)	HSP90		
DMSO 0.2%	100%	DMSO 0.2%	100%	DMSO 0.2%	100%		
MTX 0.1	397%	MTX 0.25	240%	MTX 0.25	329%		
MTX 0.25	425%	MTX 0.5	230%	MTX 0.5	343%		
Dox 0.1	429%	Dox 0.25	250%	Dox 0.25	224%		
Dox 0.2	441%	Dox 0.5	251%	Dox 0.5	311%		
Surface USDOO is detectable ofter MTV and							

- libraries.

IF image capture and analysis: Operetta High-Content Analysis System (PerkinElmer)

Conclusions

• Here, we describe a general strategy for the identification of ICD inducers within large chemical

• We have validated the capability of our ICD screening platform by identifying ODS142, a compound that elicits an ICD response - secreted ATP, HMGB1 release and surface CRT.