Translational relevance of patient-derived colon tumor Xenografts (PDX) to correlate
SANOFI ONCOLOGY pathways abnormalities with response to anti-EGFR therapy
M.Nunes ${ }^{3}$, P.Dessen ${ }^{1}$, L.Blot ${ }^{3}$, L.Bigot ${ }^{1}$, B. Demers ${ }^{3}$, Virginie Dangles-Marie ${ }^{2}$, C.Berthet ${ }^{4}$, P.Vrignaud ${ }^{3}$, S.Roman-Roman ${ }^{2}$, L. Lacroix ${ }^{1}$. ${ }^{1}$ Institut Gustave Roussy, Villejuif, ${ }^{2}$ Institut Curie, ${ }^{3}$ sanofi oncology, ${ }^{4}$ Oncodesign, Dijon, France

Frequence of abnormalities detected by CGH among all samples tested across the genome


Comparison of gene expression between primary tumor sample, early and late xenograft samples


- Abstract

Patient-derived tumor Xenografts (PDXS) are considered to be more clinically-relevant precilinical models to evaluate the antitumor activity of therapeutic agents than the human tumor cell-derived Xenografts.
Recently, through the CReMEC consortium, we established a collection of 52 colon PDXS, which were Recenty, through the CReMEC consortium, we estabished a collection of 52 collon PDDS, whicy were
characterized in terms of whole genome gene expression, chromosomal abormalities (CGH array), main gene mutations previously described in colon carcinomas, and response to cetuximab monotherapy
(AACR 2010). In the current study, we performed the
of each PDX in this precinical setting
Mutations were observed for KRAS in $21 / 52$ PDXS ( $40 \%$ ), for BRAF in $4 / 52$ PDXS ( $8 \%$ ) and for PIK3CA in 6,52 PDXs ( $12 \%$ ). Seven models had 2 coexisting mutations. Gene expression comparison between
KRASwt and KRASmt PDXs reveals a specifi patterm of genes that could be associated to cetuximab esistance. Based on tumor growth inhibition ( $\Delta T / \Delta C \leq 42 \%$ ), the response to cetuximab was observed in
1852 PDXs ( $35 \%$ ), $30 \%$ ( 618$)$ of them harboring KRAS mutation without other EGFR-Pathway
 PIK3CA mutations. $A$ positive association was established betwen the presence of theses mutations and
the non-response to cetuximat therapy ( $p=0.02$. Fisher's test) Finally, the survival of mice was evaluated based on the e time to reach a tumor volume of $750 \mathrm{mm3}$. Using, logRank test. a significicant survival
advantage ( p 0.0001 ) was observed for the cetuximab-treated KRASWt versus KRASmt PDXs. These advantage (p<0.0001) was observed for the cetuximab-rteated $K R A$ NWw versus $K R$.
results are in concordance with the ones previously reported in this slinical indication.
In conclusion, our results confirm the key role of KRAS mutation, but also of others abnormalities, as in
EGFR-Pathway, in the cetuximab resistance. Nevertheless KRAS mutation is not always a driver for the GGRR-Pathway, in the cetuximat resistance. Nevertheless KRAS mutation is not aways a arive for the
absence of response to cetuximaba. They also demonstrate that such a PDX collection could bring benefit or the evaluation of targeted therapies and to identify the molecular pathways involved in their sensitivity
nd innate resistance.

Cetuximab activity in patient-derived colon tumor Xenografts



| Cetuximab was shown very KRAS atumors $\begin{gathered}\text { widartye } \\ \text { (CR-C. }\end{gathered}$ KRAS one (CR-IC-0013M) Black curves correspond to control mice and red curves tot treated ones. <br> Red arrows indicate days of |
| :---: |
|  |  |
|  |  |

Class comparison analysis: KRAS mutated Xenografts models versus wild type.


Material and methods
Molecular characterization
Molecular characterization
CGH array analysis: Eva
array Agient technology.
Gene expression prof
Affymetrix technology.
ONA sequencing: APC (exons $9 \& 16)$, KRAS (exons $2 \& 3$ ), BRAF (exons $11 \& 155$, TP53 (exons 2 to
11). CTNNB1 (exon 3 ), PIK3CA (exons 10 to 21 ), FBXW7 (exons 3 to 10), EGFR (exons 18 to 21 ) and 11). CTNNB1 (exon 3), PIK3CA (exons 10 to 2 ).
AKT1 (exon 4) were analyzed by Sanger direct.

Determination of Microsatelitit Instability (MSI) status was determined as previously described(J. Natt
Cancer Inst 2004, Me, 261-288).
n vivo pharmacological studies
Cetuximab (Imclone) at $12.5 \mathrm{mg} / \mathrm{kg} / \mathrm{adm},(Q 3 D \times 2) \times 2 \mathrm{IP})$, mice bearing $100-200 \mathrm{~mm}^{3}$ tumors at start
Efficacy end Points: Tumor growth inhibition ( $\Delta T / \Delta C$ value)
$\Delta T \Delta C(\%)=\left[\left(\right.\right.$ median $T_{\text {Day }}-$ median $\left.T_{\text {Dax }} X\right) /\left(\right.$ median $C_{\text {Day }}-$ median $C_{\text {Dax } X X)} \times 100$
Where Day $Y$ is the day of evaluation, and Day i s the day of initiation of therapy for treated $T$ I and cont
Scoring criteria: : $=(T / C)>42 \% ;+=10<(T / C) \leqq 42 \% ;++=0 \leqq(T / C) \leqq 10 \%$ (stable disease); $+++=-$
$T T C C)<0$ (tumor regressions $)$ Statistical analysis
Pharmacology - Recursive partitioning method was performed using SAS JMP v9 software (16). The
Fishers test and all log rank analyses were performed using Everstat V5 (Sanofi based on SAS 8 ; SAS ishers' test and all log rank analyses were performed using Everstac Us sanofi based on SAS $8 ; S A S$
nstitute Inc., Cary, NC). CGH - Acquired signals were normalized according to their dye and local CCO




Cetuximab sensibility and mutation profile of genes involved in EGFR/KRAS pathway


Summary of molecular and pharmacology analysis of 54 patients derived tumor models


Survival analysis and the KRAS mutation status (Treated versus Control).


Conclusion

- The comparison of the survival curves of cetuximab-treated mice xenografted with wild type KRAS and mutant KRAS tumors shown significant difference as observed in human clinical trial.

We confirm the key role of KRAS EGFR/KRAS pathway mutation in the cetuximab resistance.

- Gene expression comparison reveals a specific pattern of 12 genes that could be associated to cetuximab response
- PDX collection could bring benefit for the evaluation of targeted therapies and to identify the molecular pathways involved in their sensitivity and innate resistance

